Abstract
Parkinson's Disease (PD) is a relatively common neurodegenerative disabling disease. It affects central nervous system with profound effect on the motor system. The most common symptoms include slowness, rigidity and tremor during motion. It has been suggested that the vocal cords are among the first one to be affected and thus the speech is affected at very early stage of the disease and continues to deteriorate as the disease progress. In this work, we focus on automating the process of diagnosis from continuous native speech by removing the necessity of a trained personal from the diagnosis process. This is done by using an adaptation of Convolutional Neural Network (CNN) architecture for one-dimensional signal processing (i.e. raw speech signal) on a relatively small training set. This is a continuation to previous works where we showed (i) that this task can be achieved by using manually-extracted features of the speech (such as formants and their ratios) and (ii) by using an automatic process of auditory features extraction, where the features were selected by signal processing specialist.
Original language | English |
---|---|
Title of host publication | 2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
ISBN (Electronic) | 9781509021529 |
DOIs | |
State | Published - 4 Jan 2017 |
Event | 2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 - Eilat, Israel Duration: 16 Nov 2016 → 18 Nov 2016 |
Publication series
Name | 2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 |
---|
Conference
Conference | 2016 IEEE International Conference on the Science of Electrical Engineering, ICSEE 2016 |
---|---|
Country/Territory | Israel |
City | Eilat |
Period | 16/11/16 → 18/11/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Keywords
- Convolutional Neural Networks (CNN)
- Machine Learning
- Parkinson's Disease
- Speech Analysis
ASJC Scopus subject areas
- Computer Science Applications
- Hardware and Architecture
- Artificial Intelligence
- Computer Networks and Communications
- Electrical and Electronic Engineering