Abstract
Understanding the mechanisms underlying biological invasions is essential to separate their actual ecological effects from those of other human disturbances. This study examined experimentally whether the non-native red seaweed Grateloupia turuturu is an opportunistic species taking advantage of degraded local conditions (passenger model), or the primary driver of changes in the structure of benthic assemblages (driver model). In a first experiment, traits of G. turuturu likely associated to its invasion success were compared between unmanipulated controls and treatments subjected to the removal of canopy-forming macroalgae to test for the passenger model. In a second experiment, rock pool assemblages where G. turuturu was selectively removed were compared with initially similar control (unmanipulated) assemblages to test for the driver model. Over a period of four months, G. turuturu showed larger cover, higher number of individuals and longer fronds in the canopy-removed compared to the control pools, while no significant differences were detected between assemblages where G. turuturu was continuously removed and those where invasion was allowed to occur. Present findings suggest that G. turuturu would rely on disturbances removing potential native competitors to spread into the recipient habitat, rather than being the main driver of ecological alterations.
Original language | English |
---|---|
Pages (from-to) | 1-9 |
Number of pages | 9 |
Journal | Marine Environmental Research |
Volume | 118 |
DOIs | |
State | Published - 1 Jul 2016 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Elsevier Ltd.
Keywords
- Alternative states
- Biological invasions
- Canopy-forming macroalgae
- Disturbance
- Grateloupia turuturu
- Rock pools
ASJC Scopus subject areas
- Oceanography
- Aquatic Science
- Pollution