Derived functors of graded algebras

Research output: Contribution to journalArticlepeer-review

Abstract

A number of spectral sequences arising in homotopy theory have the derived functors of a graded algebraic functor as their E2-term. We here describe conditions for the vanishing of such derived functors, yielding vanishing lines for the spectral sequences. We also show that under these conditions the nth derived functor, for large n, depends only on low-dimensional information. The applications we have in mind include certain cases of the Bousfield-Kan spectral sequence, the Quillen homology of a graded algebra (with applications to H. Miller's Grothendieck spectral sequence), and the wedge, smash, and homology spectral sequences.

Original languageEnglish
Pages (from-to)239-262
Number of pages24
JournalJournal of Pure and Applied Algebra
Volume64
Issue number3
DOIs
StatePublished - 9 Jul 1990
Externally publishedYes

ASJC Scopus subject areas

  • Algebra and Number Theory

Fingerprint

Dive into the research topics of 'Derived functors of graded algebras'. Together they form a unique fingerprint.

Cite this