TY - JOUR
T1 - Demographic Drivers of Aboveground Biomass Dynamics During Secondary Succession in Neotropical Dry and Wet Forests
AU - Rozendaal, Danaë M.A.
AU - Chazdon, Robin L.
AU - Arreola-Villa, Felipe
AU - Balvanera, Patricia
AU - Bentos, Tony V.
AU - Dupuy, Juan M.
AU - Hernández-Stefanoni, J. Luis
AU - Jakovac, Catarina C.
AU - Lebrija-Trejos, Edwin E.
AU - Lohbeck, Madelon
AU - Martínez-Ramos, Miguel
AU - Massoca, Paulo E.S.
AU - Meave, Jorge A.
AU - Mesquita, Rita C.G.
AU - Mora, Francisco
AU - Pérez-García, Eduardo A.
AU - Romero-Pérez, I. Eunice
AU - Saenz-Pedroza, Irving
AU - van Breugel, Michiel
AU - Williamson, G. Bruce
AU - Bongers, Frans
N1 - Publisher Copyright:
© 2016, Springer Science+Business Media New York.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - The magnitude of the carbon sink in second-growth forests is expected to vary with successional biomass dynamics resulting from tree growth, recruitment, and mortality, and with the effects of climate on these dynamics. We compare aboveground biomass dynamics of dry and wet Neotropical forests, based on monitoring data gathered over 3–16 years in forests covering the first 25 years of succession. We estimated standing biomass, annual biomass change, and contributions of tree growth, recruitment, and mortality. We also evaluated tree species’ contributions to biomass dynamics. Absolute rates of biomass change were lower in dry forests, 2.3 and 1.9 Mg ha−1 y−1, after 5–15 and 15–25 years after abandonment, respectively, than in wet forests, with 4.7 and 6.1 Mg ha−1 y−1, in the same age classes. Biomass change was largely driven by tree growth, accounting for at least 48% of biomass change across forest types and age classes. Mortality also contributed strongly to biomass change in wet forests of 5–15 years, whereas its contribution became important later in succession in dry forests. Biomass dynamics tended to be dominated by fewer species in early-successional dry than wet forests, but dominance was strong in both forest types. Overall, our results indicate that biomass dynamics during succession are faster in Neotropical wet than dry forests, with high tree mortality earlier in succession in the wet forests. Long-term monitoring of second-growth tropical forest plots is crucial for improving estimates of annual biomass change, and for enhancing understanding of the underlying mechanisms and demographic drivers.
AB - The magnitude of the carbon sink in second-growth forests is expected to vary with successional biomass dynamics resulting from tree growth, recruitment, and mortality, and with the effects of climate on these dynamics. We compare aboveground biomass dynamics of dry and wet Neotropical forests, based on monitoring data gathered over 3–16 years in forests covering the first 25 years of succession. We estimated standing biomass, annual biomass change, and contributions of tree growth, recruitment, and mortality. We also evaluated tree species’ contributions to biomass dynamics. Absolute rates of biomass change were lower in dry forests, 2.3 and 1.9 Mg ha−1 y−1, after 5–15 and 15–25 years after abandonment, respectively, than in wet forests, with 4.7 and 6.1 Mg ha−1 y−1, in the same age classes. Biomass change was largely driven by tree growth, accounting for at least 48% of biomass change across forest types and age classes. Mortality also contributed strongly to biomass change in wet forests of 5–15 years, whereas its contribution became important later in succession in dry forests. Biomass dynamics tended to be dominated by fewer species in early-successional dry than wet forests, but dominance was strong in both forest types. Overall, our results indicate that biomass dynamics during succession are faster in Neotropical wet than dry forests, with high tree mortality earlier in succession in the wet forests. Long-term monitoring of second-growth tropical forest plots is crucial for improving estimates of annual biomass change, and for enhancing understanding of the underlying mechanisms and demographic drivers.
KW - Biomass accumulation
KW - Neotropics
KW - carbon sink
KW - forest dynamics
KW - second-growth tropical forest
KW - species’ dominance
KW - tree demography
UR - http://www.scopus.com/inward/record.url?scp=84983460774&partnerID=8YFLogxK
U2 - 10.1007/s10021-016-0029-4
DO - 10.1007/s10021-016-0029-4
M3 - Article
AN - SCOPUS:84983460774
SN - 1432-9840
VL - 20
SP - 340
EP - 353
JO - Ecosystems
JF - Ecosystems
IS - 2
ER -