TY - GEN
T1 - DCSH-Matching patches in RGBD images
AU - Eshet, Yaron
AU - Korman, Simon
AU - Ofek, Eyal
AU - Avidan, Shai
PY - 2013
Y1 - 2013
N2 - We extend patch based methods to work on patches in 3D space. We start with Coherency Sensitive Hashing (CSH), which is an algorithm for matching patches between two RGB images, and extend it to work with RGBD images. This is done by warping all 3D patches to a common virtual plane in which CSH is performed. To avoid noise due to warping of patches of various normals and depths, we estimate a group of dominant planes and compute CSH on each plane separately, before merging the matching patches. The result is DCSH-an algorithm that matches world (3D) patches in order to guide the search for image plane matches. An independent contribution is an extension of CSH, which we term Social-CSH. It allows a major speedup of the k nearest neighbor (kNN) version of CSH-its runtime growing linearly, rather than quadratic ally, in k. Social-CSH is used as a subcomponent of DCSH when many NNs are required, as in the case of image denoising. We show the benefits of using depth information to image reconstruction and image denoising, demonstrated on several RGBD images.
AB - We extend patch based methods to work on patches in 3D space. We start with Coherency Sensitive Hashing (CSH), which is an algorithm for matching patches between two RGB images, and extend it to work with RGBD images. This is done by warping all 3D patches to a common virtual plane in which CSH is performed. To avoid noise due to warping of patches of various normals and depths, we estimate a group of dominant planes and compute CSH on each plane separately, before merging the matching patches. The result is DCSH-an algorithm that matches world (3D) patches in order to guide the search for image plane matches. An independent contribution is an extension of CSH, which we term Social-CSH. It allows a major speedup of the k nearest neighbor (kNN) version of CSH-its runtime growing linearly, rather than quadratic ally, in k. Social-CSH is used as a subcomponent of DCSH when many NNs are required, as in the case of image denoising. We show the benefits of using depth information to image reconstruction and image denoising, demonstrated on several RGBD images.
UR - http://www.scopus.com/inward/record.url?scp=84898803319&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2013.18
DO - 10.1109/ICCV.2013.18
M3 - Conference contribution
AN - SCOPUS:84898803319
SN - 9781479928392
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 89
EP - 96
BT - Proceedings - 2013 IEEE International Conference on Computer Vision, ICCV 2013
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2013 14th IEEE International Conference on Computer Vision, ICCV 2013
Y2 - 1 December 2013 through 8 December 2013
ER -