Abstract
Two behavioral phenomena characterize human motor memory consolidation: diminishing susceptibility to interference by a subsequent experience and the emergence of delayed, offline gains in performance. A recent model proposes that the sleep-independent reduction in interference is followed by the sleep-dependent expression of offline gains. Here, using the finger-opposition sequence-learning task, we show that an interference experienced at 2 h, but not 8 h, following the initial training prevented the expression of delayed gains at 24 h post-training. However, a 90-min nap, immediately post-training, markedly reduced the susceptibility to interference, with robust delayed gains expressed overnight, despite interference at 2 h post-training. With no interference, a nap resulted in much earlier expression of delayed gains, within 8 h post-training. These results suggest that the evolution of robustness to interference and the evolution of delayed gains can coincide immediately post-training and that both effects reflect sleep-sensitive processes.
Original language | English |
---|---|
Pages (from-to) | 1206-1213 |
Number of pages | 8 |
Journal | Nature Neuroscience |
Volume | 10 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2007 |
Bibliographical note
Funding Information:Support for this research was provided by the Council of Higher Education in Israel (M.K.), Israel Science Foundation (Y.D. and A.K.) and the Canadian Institutes of Health Research (J. Doyon, J.C. and A.K.).
ASJC Scopus subject areas
- General Neuroscience