Dataspoon: Validation of an instrumented spoon for assessment of self-feeding

Tal Krasovsky, Patrice L. Weiss, Oren Zuckerman, Avihay Bar, Tal Keren-Capelovitch, Jason Friedman

Research output: Contribution to journalArticlepeer-review

Abstract

Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 - 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments.

Original languageEnglish
Article number2114
JournalSensors
Volume20
Issue number7
DOIs
StatePublished - 1 Apr 2020

Bibliographical note

Funding Information:
Funding was partially provided by the Israeli Center of Research Excellence ?Learning in a Networked Society?, grant number 1716/12.

Funding Information:
Funding: Funding was partially provided by the Israeli Center of Research Excellence “Learning in a Networked Society”, grant number 1716/12.

Publisher Copyright:
© 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Concurrent validity
  • Feasibility
  • Kinematics
  • Outcome assessment
  • Rehabilitation

ASJC Scopus subject areas

  • Analytical Chemistry
  • Information Systems
  • Atomic and Molecular Physics, and Optics
  • Biochemistry
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Dataspoon: Validation of an instrumented spoon for assessment of self-feeding'. Together they form a unique fingerprint.

Cite this