Curvature growth of some 4-dimensional gradient Ricci soliton singularity models

Bennett Chow, Michael Freedman, Henry Shin, Yongjia Zhang

Research output: Contribution to journalArticlepeer-review

Abstract

In this note we discuss estimates for the curvature of 4-dimensional gradient Ricci soliton singularity models by applying Perelman's point selection, a fundamental result of Cheeger and Naber, and topological lemmas.

Original languageEnglish
Article number107303
JournalAdvances in Mathematics
Volume372
DOIs
StatePublished - 7 Oct 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 Elsevier Inc.

Keywords

  • Asymptotically locally Euclidean manifold
  • Gradient Ricci soliton
  • Ricci flat
  • Ricci flow
  • Singularity model

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'Curvature growth of some 4-dimensional gradient Ricci soliton singularity models'. Together they form a unique fingerprint.

Cite this