Counting Water Cells in Pattern Restricted Compositions

Toufik Mansour, Mark Shattuck

Research output: Contribution to journalArticlepeer-review


In this paper, we consider statistics on compositions of a positive integer represented geometrically as bargraphs that avoid certain classes of consecutive patterns. A unit square exterior to a bargraph that lies along a horizontal line between any two squares contained within its subtended area is called a water cell since it is a place where a liquid would collect if poured along the top part of the bargraph from above. The total number of water cells in the bargraph representation of a k-ary word then gives what is referred to as the capacity of w. Here, we determine the distribution of the capacity statistic on certain pattern-restricted compositions, regarded as k-ary words. Several general classes of patterns are considered, including and where a is arbitrary. As a consequence of our results, we obtain all of the distinct distributions for the capacity statistic on avoidance classes of compositions corresponding to 3-letter patterns having at most two distinct letters. Finally, in the case of some further enumerative results are given when a=2, including algebraic and bijective proofs for the total capacity of all Carlitz partitions of a given size having a fixed number of blocks.
Original languageEnglish
Pages (from-to)98-112
Number of pages15
JournalTurkish Journal of Analysis and Number Theory
Issue number4
StatePublished - 2019


Dive into the research topics of 'Counting Water Cells in Pattern Restricted Compositions'. Together they form a unique fingerprint.

Cite this