Abstract
Cold atoms hold much promise for the realization of quantum technologies, but still encounter many challenges. In this work we show how the fundamental Casimir-Polder force, by which atoms are attracted to a surface, may be temporarily suppressed by utilizing a specially designed quantum potential, which is familiar from the hydrodynamic or Bohmian reformulations of quantum mechanics. We show that when harnessing the quantum potential via suitable atomic wave-packet engineering, the absorption by the surface can be dramatically reduced. As a result, the probing time of the atoms as sensors can increase. This is proven both analytically and numerically. Furthermore, an experimental scheme is proposed for achieving the required shape for the atomic wave packet. All these may assist existing applications of cold atoms in metrology and sensing and may also enable prospective ones. Finally, these results shed light on the notion of quantum potential and its significance.
Original language | English |
---|---|
Article number | 013150 |
Journal | Physical Review Research |
Volume | 5 |
Issue number | 1 |
DOIs | |
State | Published - Jan 2023 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
ASJC Scopus subject areas
- General Physics and Astronomy