TY - JOUR
T1 - Conversion of TSH heterodimer to a single polypeptide chain increases bioactivity and longevity
AU - Azzam, Naiel
AU - Bar-Shalom, Rinat
AU - Fares, Fuad
PY - 2012/2
Y1 - 2012/2
N2 - TSH is a dimeric glycoprotein hormone composed of a common α-subunit noncovalently linked to a hormone-specific β-subunit. Previously, the TSH heterodimer was successfully converted to an active single-chain hormone by genetically fusing α and β genes with [TSHβ- carboxyl-terminal peptide (CTP)-α] or without (TSHβ-α) the CTP of human chorionic gonadotropin β-subunit as a linker. In the present study, TSH variants were expressed in Chinese hamster ovarian cells. The results indicated that TSHβ-α single chain has the highest binding affinity to TSH receptor and the highest in vitro bioactivity. With regard to the in vivo bioactivity, all TSH variants increased the levels of T 4 in circulation after 2 and 4h of treatment. However, the level of T 4 after treatment with TSH-wild type was significantly decreased after 6 and 8 h, compared with the levels after treatment with the other TSH variants. TSHβ-α and TSHβ-CTP-α single chains exhibited almost the same bioactivity after 8 h of treatment. Evaluating the half-life of TSH variants, TSHβ-CTP- α single chain revealed the longest half-life in circulation, whereas TSH-wild type exhibited the shortest serum half-life. These findings indicate that TSH single-chain variants with or without CTP as a linker may display conformational structures that increase binding affinity and serum half-life, thereby, suggesting novel attitudes for engineering and constructing superagonists of TSH, which may be used for treating different conditions of defected thyroid gland activity. Other prominent potential clinical use of these variants is in a diagnostic test for metastasis and recurrence of thyroid cancer.
AB - TSH is a dimeric glycoprotein hormone composed of a common α-subunit noncovalently linked to a hormone-specific β-subunit. Previously, the TSH heterodimer was successfully converted to an active single-chain hormone by genetically fusing α and β genes with [TSHβ- carboxyl-terminal peptide (CTP)-α] or without (TSHβ-α) the CTP of human chorionic gonadotropin β-subunit as a linker. In the present study, TSH variants were expressed in Chinese hamster ovarian cells. The results indicated that TSHβ-α single chain has the highest binding affinity to TSH receptor and the highest in vitro bioactivity. With regard to the in vivo bioactivity, all TSH variants increased the levels of T 4 in circulation after 2 and 4h of treatment. However, the level of T 4 after treatment with TSH-wild type was significantly decreased after 6 and 8 h, compared with the levels after treatment with the other TSH variants. TSHβ-α and TSHβ-CTP-α single chains exhibited almost the same bioactivity after 8 h of treatment. Evaluating the half-life of TSH variants, TSHβ-CTP- α single chain revealed the longest half-life in circulation, whereas TSH-wild type exhibited the shortest serum half-life. These findings indicate that TSH single-chain variants with or without CTP as a linker may display conformational structures that increase binding affinity and serum half-life, thereby, suggesting novel attitudes for engineering and constructing superagonists of TSH, which may be used for treating different conditions of defected thyroid gland activity. Other prominent potential clinical use of these variants is in a diagnostic test for metastasis and recurrence of thyroid cancer.
UR - http://www.scopus.com/inward/record.url?scp=84856094555&partnerID=8YFLogxK
U2 - 10.1210/en.2011-1856
DO - 10.1210/en.2011-1856
M3 - Article
C2 - 22234466
AN - SCOPUS:84856094555
SN - 0013-7227
VL - 153
SP - 954
EP - 960
JO - Endocrinology
JF - Endocrinology
IS - 2
ER -