Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants

Paolo Becciu, Michele Panuccio, Carlo Catoni, Giacomo Dell’Omo, Nir Sapir

Research output: Contribution to journalArticlepeer-review

Abstract

Abstract: Billions of migrating birds travel between their breeding and over-wintering areas twice a year, encountering various environmental conditions along their migration routes. Wind is of utmost importance for birds as wind speed and direction may strongly affect the birds’ flight speed and metabolism. Specifically, tailwinds were found to initiate flight and facilitate higher migration intensity and faster migratory movement while lowering the energetic cost of flight. Using radar, field observations and local meteorological measurements, we studied spring migrating raptors in a migration bottleneck in Italy near the Strait of Messina, between Sicily and Calabria. We explored the effects of wind on flight speed and the intensity of migration in soaring migrants. We found that the birds’ ground speed was positively affected by tailwind speed, and thus, tailwind likely allowed the birds to reach their destination faster. In addition, bird airspeed decreased under increasing tailwind speed, presumably lowering the energetic cost of flight. These findings are in line with predictions of optimal migration flight theory, yet, tailwind had an unexpected negative effect on migration intensity. We suggest that tailwind conditions induced a change in route selection by the migrants at a regional scale, causing a local decline in migration intensity. This change involves the undertaking of cross sea flight rather than overland detour. Furthermore, we found a modular response to crosswinds as birds compensated for winds blowing towards the sea and drifted when winds blew towards land. Our findings suggest that migrating raptors respond to en route wind conditions and coastline geography by adjusting several features of their flight in a manner that will increase their travel speed, reduce the energetic cost of flight, and permit a safe journey. Significance statement: Soaring birds exploit tailwinds to move faster and presumably to reduce the energetic cost of flight during migration. Using radar, we tested how bird flight is affected by tailwind and further predicted that the due to the advantages of using tailwinds, as increased number of birds migrating over the study area. We found that radar-tracked migrating birds flew faster with tailwinds over the study area, but despite this advantage, surprisingly low number of birds migrated when tailwinds prevailed. Furthermore, birds seem to drift with winds blowing from the sea to the land, but not in the opposite direction, suggesting that birds try to avoid drifting over the sea where it is riskier to fly. Hence, our study highlights the complexity of migrant flight behavior in relation to the wind and suggests a flexible response to different wind conditions and coastline geography at multiple spatiotemporal scales.

Original languageEnglish
Article number28
JournalBehavioral Ecology and Sociobiology
Volume72
Issue number2
DOIs
StatePublished - 1 Feb 2018

Bibliographical note

Publisher Copyright:
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature.

Keywords

  • Bird migration
  • Environmental effects
  • Flight behavior
  • Honey buzzard
  • Radar ornithology
  • Wind speed

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Animal Science and Zoology

Fingerprint

Dive into the research topics of 'Contrasting aspects of tailwinds and asymmetrical response to crosswinds in soaring migrants'. Together they form a unique fingerprint.

Cite this