Contextual Speech Recognition with Difficult Negative Training Examples

Uri Alon, Golan Pundak, Tara N. Sainath

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Improving the representation of contextual information is key to unlocking the potential of end-to-end (E2E) automatic speech recognition (ASR). In this work, we present a novel and simple approach for training an ASR context mechanism with difficult negative examples. The main idea is to focus on proper nouns (e.g., unique entities such as names of people and places) in the reference transcript and use phonetically similar phrases as negative examples, encouraging the neural model to learn more discriminative representations. We apply our approach to an end-to-end contextual ASR model that jointly learns to transcribe and select the correct context items. We show that our proposed method gives up to 53.1% relative improvement in word error rate (WER) across several benchmarks.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6440-6444
Number of pages5
ISBN (Electronic)9781479981311
DOIs
StatePublished - May 2019
Event44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019 - Brighton, United Kingdom
Duration: 12 May 201917 May 2019

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2019-May
ISSN (Print)1520-6149

Conference

Conference44th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2019
Country/TerritoryUnited Kingdom
CityBrighton
Period12/05/1917/05/19

Bibliographical note

Publisher Copyright:
© 2019 IEEE.

Keywords

  • attention
  • biasing
  • phonetics
  • sequence-to-sequence models
  • speech recognition

ASJC Scopus subject areas

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Contextual Speech Recognition with Difficult Negative Training Examples'. Together they form a unique fingerprint.

Cite this