Compressing Neural Networks: Towards Determining the Optimal Layer-wise Decomposition

Lucas Liebenwein, Alaa Maalouf, Oren Gal, Dan Feldman, Daniela Rus

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present a novel global compression framework for deep neural networks that
automatically analyzes each layer to identify the optimal per-layer compression
ratio, while simultaneously achieving the desired overall compression. Our algorithm hinges on the idea of compressing each convolutional (or fully-connected) layer by slicing its channels into multiple groups and decomposing each group via low-rank decomposition. At the core of our algorithm is the derivation of layer-wise error bounds from the Eckart–Young–Mirsky theorem. We then leverage these bounds to frame the compression problem as an optimization problem where we wish to minimize the maximum compression error across layers and propose an efficient algorithm towards a solution. Our experiments indicate that our method outperforms existing low-rank compression approaches across a wide range of networks and data sets. We believe that our results open up new avenues for future research into the global performance-size trade-offs of modern neural networks.
Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages5328-5344
Number of pages17
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: 6 Dec 202114 Dec 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume7
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period6/12/2114/12/21

Bibliographical note

Funding Information:
This research was sponsored by the United States Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the United States Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. This work was further supported by the Office of Naval Research (ONR) Grant N00014-18-1-2830.

Funding Information:
Air Force Research Laboratory and the United States Air Force Artificial Intelligence Accelerator accomplished under Cooperative Agreement Number FA8750-19-2-1000 and the Office of Naval Research (ONR) Grant N00014-18-1-2830.

Publisher Copyright:
© 2021 Neural information processing systems foundation. All rights reserved.

ASJC Scopus subject areas

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Compressing Neural Networks: Towards Determining the Optimal Layer-wise Decomposition'. Together they form a unique fingerprint.

Cite this