TY - GEN
T1 - Collaborative future event recommendation
AU - Minkov, Einat
AU - Charrow, Ben
AU - Ledlie, Jonathan
AU - Teller, Seth
AU - Jaakkola, Tommi
PY - 2010
Y1 - 2010
N2 - We demonstrate a method for collaborative ranking of future events. Previous work on recommender systems typically relies on feedback on a particular item, such as a movie, and generalizes this to other items or other people. In contrast, we examine a setting where no feedback exists on the particular item. Because direct feedback does not exist for events that have not taken place, we recommend them based on individuals' preferences for past events, combined collaboratively with other peoples' likes and dislikes. We examine the topic of unseen item recommendation through a user study of academic (scientific) talk recommendation, where we aim to correctly estimate a ranking function for each user, predicting which talks would be of most interest to them. Then by decomposing user parameters into shared and individual dimensions, we induce a similarity metric between users based on the degree to which they share these dimensions. We show that the collaborative ranking predictions of future events are more effective than pure content-based recommendation. Finally, to further reduce the need for explicit user feedback, we suggest an active learning approach for eliciting feedback and a method for incorporating available implicit user cues.
AB - We demonstrate a method for collaborative ranking of future events. Previous work on recommender systems typically relies on feedback on a particular item, such as a movie, and generalizes this to other items or other people. In contrast, we examine a setting where no feedback exists on the particular item. Because direct feedback does not exist for events that have not taken place, we recommend them based on individuals' preferences for past events, combined collaboratively with other peoples' likes and dislikes. We examine the topic of unseen item recommendation through a user study of academic (scientific) talk recommendation, where we aim to correctly estimate a ranking function for each user, predicting which talks would be of most interest to them. Then by decomposing user parameters into shared and individual dimensions, we induce a similarity metric between users based on the degree to which they share these dimensions. We show that the collaborative ranking predictions of future events are more effective than pure content-based recommendation. Finally, to further reduce the need for explicit user feedback, we suggest an active learning approach for eliciting feedback and a method for incorporating available implicit user cues.
KW - Collaborative filtering
KW - Recommendation systems
UR - http://www.scopus.com/inward/record.url?scp=78651268981&partnerID=8YFLogxK
U2 - 10.1145/1871437.1871542
DO - 10.1145/1871437.1871542
M3 - Conference contribution
AN - SCOPUS:78651268981
SN - 9781450300995
T3 - International Conference on Information and Knowledge Management, Proceedings
SP - 819
EP - 827
BT - CIKM'10 - Proceedings of the 19th International Conference on Information and Knowledge Management and Co-located Workshops
T2 - 19th International Conference on Information and Knowledge Management and Co-located Workshops, CIKM'10
Y2 - 26 October 2010 through 30 October 2010
ER -