Cold seeps alter the near-bottom biogeochemistry in the ultraoligotrophic Southeastern Mediterranean Sea

Guy Sisma-Ventura, Or M. Bialik, Yizhaq Makovsky, Eyal Rahav, Tal Ozer, Mor Kanari, Sophi Marmen, Natalia Belkin, Tamar Guy-Haim, Gilad Antler, Barak Herut, Maxim Rubin-Blum

Research output: Contribution to journalArticlepeer-review


To better understand the sphere of influence of seafloor hydrocarbon seepage in an oligotrophic marine environment, we evaluated the near-bottom biogeochemistry in near-seep and control locations of the ultra-oligotrophic Southeast Mediterranean Sea. We observed corrosive pH (pHTotal at 25 °C as low as 6.83) in water overlying a seepage site. The aberrant pH values (6.8–7.4) were measured up to 50 m above the seafloor and were accompanied by anomalously variable nutrient distribution with elevated nitrate + nitrite to phosphate ratio (30:1–53:1). The dissolved inorganic carbon (DIC) from the seeps has likely reached the water column, as low pH was decoupled from changes in alkalinity. Amplicon sequencing and metagenomics suggest that the oxidation of methane to CO2 in the deep water is catalyzed by aerobic methane-oxidizing bacteria, which were prominent below 800 m depth. Incubation experiments suggest that gas seepage affected the sediment-water nutrient exchange. Oxygen consumption rates in bioturbated sediments near the seeps were three times above the background, the influx of NO3 and NH4+, was substantial, and we detected an early diagenetic loss of PO43−. The low δ13C values of particulate organic matter (-29.0 and -25.0‰), and its high C:N ratio (11.78–16.76) indicate that the seeps affect the suspended particles in the overlying water, and thus may influence the trophic webs. We show that the seeps affect the functionality of the deep-sea environment, being an important source of carbon and altering nutrient regimes in oligotrophic regions.

Original languageEnglish
Article number103744
JournalDeep-Sea Research Part I: Oceanographic Research Papers
StatePublished - May 2022

Bibliographical note

Publisher Copyright:
© 2022 Elsevier Ltd


  • Benthic fluxes
  • Carbonate system
  • Deep sea
  • Hydrocarbon seeps
  • Microbes
  • Nutrients
  • The Mediterranean Sea

ASJC Scopus subject areas

  • Oceanography
  • Aquatic Science


Dive into the research topics of 'Cold seeps alter the near-bottom biogeochemistry in the ultraoligotrophic Southeastern Mediterranean Sea'. Together they form a unique fingerprint.

Cite this