Abstract
Understanding past human settlement of inhospitable regions is one of the most intriguing puzzles in archaeological research, with implications for more sustainable use of marginal regions today. During the Byzantine period in the 4th century CE, large settlements were established in the arid region of the Negev Desert, Israel, but it remains unclear why it did so, and why the settlements were abandoned three centuries later. Previous theories proposed that the Negev was a “green desert” in the early 1st millennium CE, and that the Byzantine Empire withdrew from this region due to a dramatic climatic downturn. In the absence of a local climate archive correlated to the Byzantine/Early Islamic transition, testing this theory has proven challenging. We use stable isotopic indicators of animal dietary and mobility patterns to assess the extent of the vegetative cover in the desert. By doing so, we aim to detect possible climatic fluctuations that may have led to the abandonment of the Byzantine settlements. The findings show that the Negev Desert was not greener during the time period under investigation than it is today and that the composition of the animals’ diets, as well as their grazing mobility patterns, remained unchanged through the Byzantine/Early Islamic transition. Favoring a non-climatic explanation, we propose instead that the abandonment of the Negev Byzantine settlements was motivated by restructuring of the Empire’s territorial priorities.
Original language | English |
---|---|
Article number | 1512 |
Journal | Scientific Reports |
Volume | 10 |
Issue number | 1 |
DOIs | |
State | Published - 30 Jan 2020 |
Bibliographical note
Funding Information:Permission to carry out this study was provided by the Israel Antiquities Authority (Elusa: G-69/2014, G-10/2015, G-6/2017; Shivta: G-87/2015, G-4/2016; Nessana: G-4/2017). We wish to thank the Israel National Park Authority for facilitating the excavations in Shivta and Nessana. We would also like to thank Robert Michener at Boston University for running analyses of the organic samples. This work was supported by the European Research Council Horizon 2020 Research and Innovation program (Grant No. 648427) and the Israel Science Foundation (Grant 340-14).
Publisher Copyright:
© 2020, The Author(s).
ASJC Scopus subject areas
- General