Abstract
Dementia is currently diagnosed based on clinical symptoms and signs, but significant brain damage has already occurred by the time a clinical diagnosis of dementia is made, and it is increasingly recognized that this may be too late for any effective intervention. It would therefore be of great public health and preventive value to define a variety of biomarkers that could permit early detection of persons at a higher risk for developing dementia, and specifically dementia due to Alzheimer's disease. Nevertheless, for the purpose of large-scale screening, circulating biomarkers are more appropriate because they are less invasive than lumbar puncture, less costly than brain amyloid imaging and can be easily assessed repeatedly in a primary care clinic setting. In this brief review we will review a number of candidate molecules implicated as possible predictors of dementia risk. These candidates include markers of vascular injury, metabolic and inflammatory states, amyloid and tau pathway markers, measures of neural degeneration and repair efforts, and other molecules that might contribute to anatomical and functional changes characteristic of dementia and Alzheimer's disease.
Original language | English |
---|---|
Article number | 6 |
Journal | Alzheimer's Research and Therapy |
Volume | 6 |
Issue number | 1 |
DOIs | |
State | Published - 21 Jan 2014 |
Externally published | Yes |
Bibliographical note
Funding Information:This review was supported by grants from the National Institute of Neurological Disorders and Stroke (NS17950), the National Heart, Lung and Blood Association (HL93029, U01HL 096917) and the National Institute of Aging (AG08122, AG16495, AG033193, AG031287, P30AG013846). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Neurological Disorders and Stroke, the National Heart Lung and Blood Institute, the National Institute of Aging or the National Institutes of Health.
ASJC Scopus subject areas
- Neurology
- Clinical Neurology
- Cognitive Neuroscience