TY - JOUR
T1 - Chromosomal speciation and adaptive radiation of mole rats in Asia Minor correlated with increased ecological stress
AU - Nevo, Eviatar
AU - Filippucci, Maria Grazia
AU - Redi, Carlo
AU - Korol, Abraham
AU - Beiles, Avigdor
PY - 1994/8/16
Y1 - 1994/8/16
N2 - The evolutionary forces causing chromosomal speciation and adaptation are still enigmatic. Here we tested the Israeli evolutionary model of positive association of diploid chromosome number (2n) and genetic diversity with aridity stress in subterranean mole rats, on a 30-times-larger scale in Asia Minor. We analyzed both karyotype and allozyme diversity across Turkey, based on 37 allozymic loci in 20 localities of the Spalax leucodon and 4 localities of the Spalax ehrenbergi superspecies. We found extensive chromosomal speciation in S. leucodon (2n = 38, 40, 50, 54, 60, and 62) and in S. ehrenbergi (2n = 52, 56, and 58), presumably representing from 14 to >20 additional biological species. Genetic diversity indices were low, but, like the chromosome number (2n), positively correlated with aridity stress, increasing centripetally from the periphery toward geologically young, arid, and climatically unpredictable central Anatolia. Nei's genetic distance D across all populations averaged 0.174 (range 0.002-0.422), supporting, combined with 2n and ecogeography, the biological species status of most tested populations. Chromosome evolution is the basis of speciation and adaptation in Spalax; it provides both postmating reproductive isolation, as well as higher levels of recombination with increased 2n. A mathematical model shows that a Robertsonian fission of a single metacentric considerably increases haplotype diversity. This haplotype diversity may contribute to population adaptation to climatic stress and ecological unpredictability in space and time. The increase in diversity corroborates the niche-width genetic-variation hypothesis.
AB - The evolutionary forces causing chromosomal speciation and adaptation are still enigmatic. Here we tested the Israeli evolutionary model of positive association of diploid chromosome number (2n) and genetic diversity with aridity stress in subterranean mole rats, on a 30-times-larger scale in Asia Minor. We analyzed both karyotype and allozyme diversity across Turkey, based on 37 allozymic loci in 20 localities of the Spalax leucodon and 4 localities of the Spalax ehrenbergi superspecies. We found extensive chromosomal speciation in S. leucodon (2n = 38, 40, 50, 54, 60, and 62) and in S. ehrenbergi (2n = 52, 56, and 58), presumably representing from 14 to >20 additional biological species. Genetic diversity indices were low, but, like the chromosome number (2n), positively correlated with aridity stress, increasing centripetally from the periphery toward geologically young, arid, and climatically unpredictable central Anatolia. Nei's genetic distance D across all populations averaged 0.174 (range 0.002-0.422), supporting, combined with 2n and ecogeography, the biological species status of most tested populations. Chromosome evolution is the basis of speciation and adaptation in Spalax; it provides both postmating reproductive isolation, as well as higher levels of recombination with increased 2n. A mathematical model shows that a Robertsonian fission of a single metacentric considerably increases haplotype diversity. This haplotype diversity may contribute to population adaptation to climatic stress and ecological unpredictability in space and time. The increase in diversity corroborates the niche-width genetic-variation hypothesis.
KW - Spalax ehrenbergi
KW - Spalax leucodon
KW - Turkey
KW - recombination
KW - selection
UR - http://www.scopus.com/inward/record.url?scp=0028059281&partnerID=8YFLogxK
U2 - 10.1073/pnas.91.17.8160
DO - 10.1073/pnas.91.17.8160
M3 - Article
C2 - 8058774
AN - SCOPUS:0028059281
SN - 0027-8424
VL - 91
SP - 8160
EP - 8164
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 17
ER -