Abstract
Let/be a continuously differentiable function on [—1, 1] satisfying |f’(t)| < C\t\α for some 0 < C, α < ∞ and all — 1 ≤ t ≤ 1, and let λ = (λi) Є lr satisfy — 1 ≤ λi ≤ 1 for all i. Then αf, λ=(f(λi) - f(λj) /λi- λj) is a Schur-Hadamard multiplier from Cp i into CP2 for all pi, p2 satisfying 1 ≤ p2 ≤ 2 ≤ p1 ≤ ∞ and p2-1 ≤ p1-1 + α/r.
Original language | English |
---|---|
Pages (from-to) | 59-64 |
Number of pages | 6 |
Journal | Proceedings of the American Mathematical Society |
Volume | 86 |
Issue number | 1 |
DOIs | |
State | Published - Sep 1982 |
Keywords
- Cp spaces
- Schur-Hadamard multipliers
- Triangular projection
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics