Bookmarks in grammar-compressed strings

Patrick Hagge Cording, Pawel Gawrychowski, Oren Weimann

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We consider the problem of storing a grammar of size n compressing a string of size N, and a set of positions {i1, …, ib} (bookmarks) such that any substring of length l crossing one of the positions can be decompressed in O(l) time. Our solution uses space O((n+b)max{1, log n−log (n/b + b/n)}). Existing solutions for the bookmarking problem either require more space or a super-constant “kick-off” time to start the decompression.

Original languageEnglish
Title of host publicationString Processing and Information Retrieval - 23rd International Symposium, SPIRE 2016, Proceedings
EditorsShunsuke Inenaga, Kunihiko Sadakane, Tetsuya Sakai
PublisherSpringer Verlag
Pages153-159
Number of pages7
ISBN (Print)9783319460482
DOIs
StatePublished - 2016
Event23rd International Symposium on String Processing and Information Retrieval, SPIRE 2016 - Beppu, Japan
Duration: 18 Oct 201620 Oct 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9954 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Symposium on String Processing and Information Retrieval, SPIRE 2016
Country/TerritoryJapan
CityBeppu
Period18/10/1620/10/16

Bibliographical note

Publisher Copyright:
© Springer International Publishing AG 2016.

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science (all)

Fingerprint

Dive into the research topics of 'Bookmarks in grammar-compressed strings'. Together they form a unique fingerprint.

Cite this