TY - CHAP
T1 - Biological Warfare of the Spiny Plant. Introducing Pathogenic Microorganisms into Herbivore's Tissues
AU - Halpern, Malka
AU - Waissler, Avivit
AU - Dror, Adi
AU - Lev-Yadun, Simcha
PY - 2011
Y1 - 2011
N2 - Recently, it has been proposed that plants which have spines, thorns, and prickles use pathogenic aerobic and anaerobic bacteria, as well as pathogenic fungi, for defense against herbivores, especially vertebrates. Their sharp defensive appendages may inject various pathogenic agents into the body of the herbivores by piercing the outer defensive layer of the skin in a type of biological warfare. Here, we review data regarding the various bacterial taxa found on spines, as well as the medical literature regarding infections by bacteria and fungi related to spine injuries. We also present new evidence that, concerning the microbial flora, spines belonging to the palm tree Washingtonia filifera are probably a different habitat than the nondefensive green photosynthetic leaf surfaces. In addition, many plant species have microscopic internal and external spines (raphids and silica needles) which can also wound large herbivores as well as insects and other small invertebrate herbivores that usually attack in between large spines, prickles, and thorns. The large spines and sharp microscopic structures may inject not only the microorganisms that inhabit them into the herbivore's tissues, but also those preexisting on the skin surface or inside the digestive system of the herbivores and on the surface of nonspiny plant parts. A majority of the spiny plants visually advertise their spiny nature, a characteristic known as aposematism (warning coloration). The pathogenic microorganisms may sometimes be much more dangerous than the physical wounds inflicted by the spines. In accordance, we suggest that the possible cooperation or even just the random association of spines with pathogenic microorganisms contributed to the evolution of aposematism in spiny plants and animals. The role of these sharp defensive structures in inserting pathogenic viruses into the tissues of herbivores was never studied systematically and deserves special attention.
AB - Recently, it has been proposed that plants which have spines, thorns, and prickles use pathogenic aerobic and anaerobic bacteria, as well as pathogenic fungi, for defense against herbivores, especially vertebrates. Their sharp defensive appendages may inject various pathogenic agents into the body of the herbivores by piercing the outer defensive layer of the skin in a type of biological warfare. Here, we review data regarding the various bacterial taxa found on spines, as well as the medical literature regarding infections by bacteria and fungi related to spine injuries. We also present new evidence that, concerning the microbial flora, spines belonging to the palm tree Washingtonia filifera are probably a different habitat than the nondefensive green photosynthetic leaf surfaces. In addition, many plant species have microscopic internal and external spines (raphids and silica needles) which can also wound large herbivores as well as insects and other small invertebrate herbivores that usually attack in between large spines, prickles, and thorns. The large spines and sharp microscopic structures may inject not only the microorganisms that inhabit them into the herbivore's tissues, but also those preexisting on the skin surface or inside the digestive system of the herbivores and on the surface of nonspiny plant parts. A majority of the spiny plants visually advertise their spiny nature, a characteristic known as aposematism (warning coloration). The pathogenic microorganisms may sometimes be much more dangerous than the physical wounds inflicted by the spines. In accordance, we suggest that the possible cooperation or even just the random association of spines with pathogenic microorganisms contributed to the evolution of aposematism in spiny plants and animals. The role of these sharp defensive structures in inserting pathogenic viruses into the tissues of herbivores was never studied systematically and deserves special attention.
UR - http://www.scopus.com/inward/record.url?scp=79953200153&partnerID=8YFLogxK
U2 - 10.1016/B978-0-12-387022-3.00008-2
DO - 10.1016/B978-0-12-387022-3.00008-2
M3 - Chapter
C2 - 21459195
AN - SCOPUS:79953200153
T3 - Advances in Applied Microbiology
SP - 97
EP - 116
BT - Advances in Applied Microbiology
PB - Academic Press Inc.
ER -