Better tradeoffs for exact distance oracles in planar graphs

Pawel Gawrychowski, Shay Mozes, Oren Weimann, Christian Wulff-Nilsen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We present an O(n1:5)-space distance oracle for directed planar graphs that answers distance queries in O(log n) time. Our oracle both significantly simplifies and significantly improves the recent oracle of Cohen-Addad, Dahlgaard and Wulff-Nilsen [FOCS 2017], which uses O(n5=3)-space and answers queries in O(log n) time. We achieve this by designing an elegant and efficient point location data structure for Voronoi diagrams on planar graphs. We further show a smooth tradeoff between space and query-time. For any S 2 [n; n2], we show an oracle of size S that answers queries in ~O (maxf1; n1:5=Sg) time. This new tradeoff is currently the best (up to polylogarithmic factors) for the entire range of S and improves by polynomial factors over all previously known tradeoffs for the range S 2 [n; n5=3].

Original languageEnglish
Title of host publication29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
EditorsArtur Czumaj
PublisherAssociation for Computing Machinery
Pages515-529
Number of pages15
ISBN (Electronic)9781611975031
DOIs
StatePublished - 2018
Event29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018 - New Orleans, United States
Duration: 7 Jan 201810 Jan 2018

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Conference

Conference29th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018
Country/TerritoryUnited States
CityNew Orleans
Period7/01/1810/01/18

Bibliographical note

Publisher Copyright:
© Copyright 2018 by SIAM.

ASJC Scopus subject areas

  • Software
  • General Mathematics

Fingerprint

Dive into the research topics of 'Better tradeoffs for exact distance oracles in planar graphs'. Together they form a unique fingerprint.

Cite this