Benchmark study using a multi-scale, multi-methodological approach for the petrophysical characterization of reservoir sandstones

Peleg Haruzi, Regina Katsman, Matthias Halisch, Nicolas Waldmann, Baruch Spiro

Research output: Contribution to journalArticlepeer-review


This paper presents a detailed description and evaluation of a multi-methodological petrophysical approach for the comprehensive multi-scale characterization of reservoir sandstones. The suggested methodology enables the identification of links between Darcy-scale permeability and an extensive set of geometrical, textural and topological rock descriptors quantified at the pore scale. This approach is applied to the study of samples from three consecutive sandstone layers of Lower Cretaceous age in northern Israel. These layers differ in features observed at the outcrop, hand specimen, petrographic microscope and micro-CT scales. Specifically, laboratory porosity and permeability measurements of several centimetre-sized samples show low variability in the quartz arenite (top and bottom) layers but high variability in the quartz wacke (middle) layer. The magnitudes of this variability are also confirmed by representative volume sizes and by anisotropy evaluations conducted on micro-CT-imaged 3-D pore geometries. Two scales of directional porosity variability are revealed in quartz arenite sandstone of the top layer: the pore size scale of ~ 0:1 mm in all directions and ~ 3:5 mm scale related to the occurrence of high-and low-porosity horizontal bands occluded by Fe oxide cementation. This millimetre-scale variability controls the laboratory-measured macroscopic rock permeability. More heterogeneous pore structures were revealed in the quartz wacke sandstone of the intermediate layer, which shows high inverse correlation between porosity and clay matrix in the vertical direction attributed to depositional processes and comprises an internal spatial irregularity. Quartz arenite sandstone of the bottom layer is homogenous and isotropic in the investigated domain, revealing porosity variability at a ~ 0:1 mm scale, which is associated with the average pore size. Good agreement between the permeability upscaled from the pore-scale modelling and the estimates based on laboratory measurements is shown for the quartz arenite layers. The proposed multi-methodological approach leads to an accurate petrophysical characterization of reservoir sandstones with broad ranges of textural, topological and mineralogical characteristics and is particularly applicable for describing anisotropy and heterogeneity of sandstones on various rock scales. The results of this study also contribute to the geological interpretation of the studied stratigraphic units.

Original languageEnglish
Article number34
Pages (from-to)665-689
Number of pages25
JournalSolid Earth
Issue number3
StatePublished - 19 Mar 2021

Bibliographical note

Publisher Copyright:
© 2021 Author(s).

ASJC Scopus subject areas

  • Soil Science
  • Geophysics
  • Geology
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Stratigraphy
  • Paleontology


Dive into the research topics of 'Benchmark study using a multi-scale, multi-methodological approach for the petrophysical characterization of reservoir sandstones'. Together they form a unique fingerprint.

Cite this