Audiovisual Moments in Time: A large-scale annotated dataset of audiovisual actions

Michael Joannou, Pia Rotshtein, Uta Noppeney

Research output: Contribution to journalArticlepeer-review


We present Audiovisual Moments in Time (AVMIT), a large-scale dataset of audiovisual action events. In an extensive annotation task 11 participants labelled a subset of 3-second audiovisual videos from the Moments in Time dataset (MIT). For each trial, participants assessed whether the labelled audiovisual action event was present and whether it was the most prominent feature of the video. The dataset includes the annotation of 57,177 audiovisual videos, each independently evaluated by 3 of 11 trained participants. From this initial collection, we created a curated test set of 16 distinct action classes, with 60 videos each (960 videos). We also offer 2 sets of pre-computed audiovisual feature embeddings, using VGGish/YamNet for audio data and VGG16/EfficientNetB0 for visual data, thereby lowering the barrier to entry for audiovisual DNN research. We explored the advantages of AVMIT annotations and feature embeddings to improve performance on audiovisual event recognition. A series of 6 Recurrent Neural Networks (RNNs) were trained on either AVMIT-filtered audiovisual events or modality-agnostic events from MIT, and then tested on our audiovisual test set. In all RNNs, top 1 accuracy was increased by 2.71-5.94% by training exclusively on audiovisual events, even outweighing a three-fold increase in training data. Additionally, we introduce the Supervised Audiovisual Correspondence (SAVC) task whereby a classifier must discern whether audio and visual streams correspond to the same action label. We trained 6 RNNs on the SAVC task, with or without AVMIT-filtering, to explore whether AVMIT is helpful for cross-modal learning. In all RNNs, accuracy improved by 2.09-19.16% with AVMIT-filtered data. We anticipate that the newly annotated AVMIT dataset will serve as a valuable resource for research and comparative experiments involving computational models and human participants, specifically when addressing research questions where audiovisual correspondence is of critical importance.

Original languageEnglish
Article numbere0301098
JournalPLoS ONE
Issue number4 APRIL
StatePublished - Apr 2024

Bibliographical note

Publisher Copyright:
© 2024 Joannou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ASJC Scopus subject areas

  • General


Dive into the research topics of 'Audiovisual Moments in Time: A large-scale annotated dataset of audiovisual actions'. Together they form a unique fingerprint.

Cite this