Abstract
Neural Processes (NPs) (Garnelo et al., 2018a;b) approach regression by learning to map a context set of observed input-output pairs to a distribution over regression functions. Each function models the distribution of the output given an input, conditioned on the context. NPs have the benefit of fitting observed data efficiently with linear complexity in the number of context input-output pairs, and can learn a wide family of conditional distributions; they learn predictive distributions conditioned on context sets of arbitrary size. Nonetheless, we show that NPs suffer a fundamental drawback of underfitting, giving inaccurate predictions at the inputs of the observed data they condition on. We address this issue by incorporating attention into NPs, allowing each input location to attend to the relevant context points for the prediction. We show that this greatly improves the accuracy of predictions, results in noticeably faster training, and expands the range of functions that can be modelled.
Original language | English |
---|---|
State | Published - 2019 |
Externally published | Yes |
Event | 7th International Conference on Learning Representations, ICLR 2019 - New Orleans, United States Duration: 6 May 2019 → 9 May 2019 |
Conference
Conference | 7th International Conference on Learning Representations, ICLR 2019 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 6/05/19 → 9/05/19 |
Bibliographical note
Publisher Copyright:© 7th International Conference on Learning Representations, ICLR 2019. All Rights Reserved.
ASJC Scopus subject areas
- Education
- Computer Science Applications
- Linguistics and Language
- Language and Linguistics