Associative grammar combination operators for tree-based grammars

Yael Sygal, Shuly Wintner

Research output: Contribution to journalArticlepeer-review

Abstract

Polarized unification grammar (PUG) is a linguistic formalism which uses polarities to better control the way grammar fragments interact. The grammar combination operation of PUG was conjectured to be associative. We show that PUG grammar combination is not associative, and even attaching polarities to objects does not make it order-independent. Moreover, we prove that no non-trivial polarity system exists for which grammar combination is associative. We then redefine the grammar combination operator, moving to the powerset domain, in a way that guarantees associativity. The method we propose is general and is applicable to a variety of tree-based grammar formalisms.

Original languageEnglish
Pages (from-to)293-316
Number of pages24
JournalJournal of Logic, Language and Information
Volume18
Issue number3
DOIs
StatePublished - Jul 2009

Bibliographical note

Funding Information:
Acknowledgements This research was supported by The Israel Science Foundation (grant no. 136/01). We are grateful to Yannick Parmentier for his help and support, including very useful comments on earlier versions of this paper. We wish to thank Claire Gardent for giving us the opportunity to present some of these results at the XMG Workshop in LORIA Nancy in 2007. We also benefited from constructive comments by three anonymous referees. All remaining errors and misconceptions are, of course, our own.

Keywords

  • Grammar combination
  • Grammatical formalisms
  • Modularity
  • Polarized unification grammar

ASJC Scopus subject areas

  • Computer Science (miscellaneous)
  • Philosophy
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Associative grammar combination operators for tree-based grammars'. Together they form a unique fingerprint.

Cite this