Abstract
Emerging forms of mobile phone data generated from the use of mobile phone applications have the potential to advance scientific research across a range of disciplines. However, there are risks regarding uncertainties in the socio-demographic representativeness of these data, which may introduce bias and mislead policy recommendations. This paper addresses the issue directly by developing a novel approach to assessing socio-demographic representativeness, demonstrating this with two large independent mobile phone application datasets, Huq and Tamoco, each with three years data for a large and diverse city-region (Glasgow, Scotland) home to over 1.8 million people. We advance methods for detecting home location by including high-resolution land use data in the process and test representativeness across multiple dimensions. Our findings offer greater confidence in using mobile phone app data for research and planning. Both datasets show good representativeness compared to the known population distribution. Indeed, they achieve better population coverage than the ‘gold standard’ random sample survey which is the alternative source of data on population mobility in this region. More importantly, our approach provides an improved benchmark for assessing the quality of similar data sources in the future.
Original language | English |
---|---|
Article number | 102997 |
Journal | Applied Geography |
Volume | 158 |
DOIs | |
State | Published - Sep 2023 |
Bibliographical note
Publisher Copyright:© 2023 The Authors
Keywords
- Huq
- Mobile phone data
- Socio-demographic representativeness
- Tamoco
ASJC Scopus subject areas
- Forestry
- Geography, Planning and Development
- General Environmental Science
- Tourism, Leisure and Hospitality Management