Artificial Intelligence as a Tool to Study the 3D Skeletal Architecture in Newly Settled Coral Recruits: Insights into the Effects of Ocean Acidification on Coral Biomineralization

Federica Scucchia, Katrein Sauer, Paul Zaslansky, Tali Mass

Research output: Contribution to journalArticlepeer-review

Abstract

Understanding the formation of the coral skeleton has been a common subject uniting various marine and materials study fields. Two main regions dominate coral skeleton growth: Rapid Accretion Deposits (RADs) and Thickening Deposits (TDs). These have been extensively characterized at the 2D level, but their 3D characteristics are still poorly described. Here, we present an innovative approach to combine synchrotron phase contrast-enhanced microCT (PCE-CT) with artificial intelligence (AI) to explore the 3D architecture of RADs and TDs within the coral skeleton. As a reference study system, we used recruits of the stony coral Stylophora pistillata from the Red Sea, grown under both natural and simulated ocean acidification conditions. We thus studied the recruit’s skeleton under both regular and morphologically-altered acidic conditions. By imaging the corals with PCE-CT, we revealed the interwoven morphologies of RADs and TDs. Deep-learning neural networks were invoked to explore AI segmentation of these regions, to overcome limitations of common segmentation techniques. This analysis yielded highly-detailed 3D information about the RAD’s and TD’s architecture. Our results demonstrate how AI can be used as a powerful tool to obtain 3D data essential for studying coral biomineralization and for exploring the effects of environmental change on coral growth.

Original languageEnglish
Article number391
JournalJournal of Marine Science and Engineering
Volume10
Issue number3
DOIs
StatePublished - Mar 2022

Bibliographical note

Funding Information:
This project has received funding from GIF, the German-Israeli Foundation for Scientific Research and Development (I-1496-302.8), from the Israeli Binational Science Foundation (BSF 2016321 to T.M.) and from the European Research Council (ERC) under the European Union?s Horizon 2020 research and innovation programme (grant agreement no. 755876 to T.M.). The experiment was performed in a controlled aquarium system which was funded by Institutional ISF grants 2288/16.

Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Keywords

  • Artificial intelligence
  • Biomineralization
  • Coral recruits
  • Coral reefs
  • Ocean acidification
  • PCE-CT
  • Skeletal structure
  • Synchrotron phase contrast-enhanced microCT

ASJC Scopus subject areas

  • Civil and Structural Engineering
  • Water Science and Technology
  • Ocean Engineering

Fingerprint

Dive into the research topics of 'Artificial Intelligence as a Tool to Study the 3D Skeletal Architecture in Newly Settled Coral Recruits: Insights into the Effects of Ocean Acidification on Coral Biomineralization'. Together they form a unique fingerprint.

Cite this