Arbitrarily slow decay in the logarithmically averaged Sarnak conjecture

Amir Algom, Zhiren Wang

Research output: Contribution to journalArticlepeer-review

Abstract

In 2017 Tao proposed a variant Sarnak's Möbius disjointness conjecture with logarithmic averaging: For any zero entropy dynamical system (X,T), [Formula presneted] for every f∈C(X) and every x∈X. We construct examples showing that this o(1) can go to zero arbitrarily slowly. Nonetheless, all of our examples satisfy the conjecture.

Original languageEnglish
Article number128621
JournalJournal of Mathematical Analysis and Applications
Volume540
Issue number1
DOIs
StatePublished - 1 Dec 2024

Bibliographical note

Publisher Copyright:
© 2024 Elsevier Inc.

Keywords

  • Möbius disjointness
  • Topological dynamics
  • Zero topological entropy

ASJC Scopus subject areas

  • Analysis
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Arbitrarily slow decay in the logarithmically averaged Sarnak conjecture'. Together they form a unique fingerprint.

Cite this