Age-Specific Modulation of Prefrontal Cortex LTP by Glucocorticoid Receptors Following Brief Exposure to HFD

Kuldeep Shrivastava, Tali Rosenberg, Noam Meiri, Mouna Maroun

Research output: Contribution to journalArticlepeer-review

Abstract

The corticolimbic circuits in general and the medial prefrontal cortex in particular, undergo maturation during juvenility. It is thus expected that environmental challenges in forms of obesogenic diet can exert different effects in juvenile animals compared to adults. Further, the relationship between glucocorticoids and obesity has also been demonstrated in several studies. As a result, glucocorticoid receptor (GR) antagonists are currently being tested as potential anti-obesity agents. In the present study, we examined the effects of short-term exposure to high-fat diet (HFD) on prefrontal long-term potentiation (LTP) in both juvenile and adult rats, and the role of glucocorticoid receptors (GRs) in modulating these effects. We found HFD impaired prefrontal LTP in both juveniles and adults, but the effects of GR modulation were age- and diet-dependent. Specifically, GR antagonist RU-486 reversed the impairment of LTP in juvenile animals following HFD, and had no effect on control-diet animals. In adult animals, RU-486 has no effect on HFD-impaired LTP, but abolished LTP in control-diet animals. Furthermore, impairments in the prefrontal LTP following HFD are involved with an increase in the mPFC GR levels only in the juveniles. Further, we found that in vivo application of GR agonists into adult mPFC rescued HFD-induced impairment in LTP, suggesting that these receptors might represent strategic therapeutic targets to potentially combat obesity and metabolic related disorder.

Original languageEnglish
Article number722827
JournalFrontiers in Synaptic Neuroscience
Volume13
DOIs
StatePublished - 4 Oct 2021

Bibliographical note

Publisher Copyright:
© Copyright © 2021 Shrivastava, Rosenberg, Meiri and Maroun.

Keywords

  • LTP
  • adult
  • basolateral amygdala
  • glucocorticoids
  • juvenile
  • plasticity
  • prefrontal cortex

ASJC Scopus subject areas

  • Cellular and Molecular Neuroscience
  • Cell Biology

Fingerprint

Dive into the research topics of 'Age-Specific Modulation of Prefrontal Cortex LTP by Glucocorticoid Receptors Following Brief Exposure to HFD'. Together they form a unique fingerprint.

Cite this