TY - JOUR
T1 - Accurate multi-boson long-time dynamics in triple-well periodic traps
AU - Streltsov, Alexej I.
AU - Sakmann, Kaspar
AU - Alon, Ofir E.
AU - Cederbaum, Lorenz S.
PY - 2011/4/6
Y1 - 2011/4/6
N2 - In order to solve the many-boson Schrödinger equation we utilize the multiconfigurational time-dependent Hartree method for bosons (MCTDHB). To be able to attack larger systems and/or to propagate the solution for longer times, we implement a parallel version of the MCTDHB method, thereby realizing the recently proposed idea on how to construct efficiently the result of the action of the Hamiltonian on a bosonic state vector. As an illustrative example of its own interest, we study the real-space dynamics of repulsive bosonic systems made of N=12, 51, and 3003 bosons in triple-well periodic potentials. The ground state of this system is threefold fragmented. By suddenly strongly distorting the trap potential, the system performs complex many-body quantum dynamics. At long times it reveals a tendency to an oscillatory behavior around a threefold fragmented state. These oscillations are strongly suppressed and damped by quantum depletions. In spite of the richness of the observed dynamics, the three time-adaptive orbitals of MCTDHB(M=3) are capable of describing the many-boson quantum dynamics of the system for short and intermediate times. For longer times, however, more self-consistent time-adaptive orbitals are needed to correctly describe the nonequilibrium many-body physics. The convergence of the MCTDHB(M) method with the number M of self-consistent time-dependent orbitals used is demonstrated.
AB - In order to solve the many-boson Schrödinger equation we utilize the multiconfigurational time-dependent Hartree method for bosons (MCTDHB). To be able to attack larger systems and/or to propagate the solution for longer times, we implement a parallel version of the MCTDHB method, thereby realizing the recently proposed idea on how to construct efficiently the result of the action of the Hamiltonian on a bosonic state vector. As an illustrative example of its own interest, we study the real-space dynamics of repulsive bosonic systems made of N=12, 51, and 3003 bosons in triple-well periodic potentials. The ground state of this system is threefold fragmented. By suddenly strongly distorting the trap potential, the system performs complex many-body quantum dynamics. At long times it reveals a tendency to an oscillatory behavior around a threefold fragmented state. These oscillations are strongly suppressed and damped by quantum depletions. In spite of the richness of the observed dynamics, the three time-adaptive orbitals of MCTDHB(M=3) are capable of describing the many-boson quantum dynamics of the system for short and intermediate times. For longer times, however, more self-consistent time-adaptive orbitals are needed to correctly describe the nonequilibrium many-body physics. The convergence of the MCTDHB(M) method with the number M of self-consistent time-dependent orbitals used is demonstrated.
UR - http://www.scopus.com/inward/record.url?scp=79960624310&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.83.043604
DO - 10.1103/PhysRevA.83.043604
M3 - Article
AN - SCOPUS:79960624310
SN - 1050-2947
VL - 83
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
IS - 4
M1 - 043604
ER -