Abstract
A wide range of nanoparticle properties can be tuned by changing their surface characteristics, especially when dealing with ultrathin nanomaterials. Surface modification with transition-metal ions may affect a variety of the nanoparticles' properties including the surface charge, the electronic structure, and the electrical and optical characteristics. In this work, a surface study of ceria nanoparticles modified by attachment of various transition-metal ions to their surface is conducted. Characterization of the decorated particles as well as of the modifying transition-metal ion is carried out using zeta potential in organic solution, UV–Vis absorption, and electron paramagnetic resonance measurements, together with isothermal titration calorimetry, X-ray photoelectron spectroscopy, and energy dispersive X-ray spectroscopy. All measurements confirm the attachment of the cation to the surface of ceria, both in solid state and in colloidal suspension. It is suggested that the modifying ion-complex attaches to ceria both via chemical or strong physical interactions and weak physical interactions, demonstrated by a case-study modification of ceria using a copper-oleylamine complex. The metalization has a significant effect on the surface charge of the nanoparticles by shifting the zeta potential to more positive values and on the optical properties of the modifying transition-metal ions by red-shifting their absorption peak.
Original language | English |
---|---|
Article number | 1800452 |
Journal | Particle and Particle Systems Characterization |
Volume | 36 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Keywords
- cerium oxide
- ion attachment
- nanoparticle-ion interface
- surface modification
- zeta potential
ASJC Scopus subject areas
- General Chemistry
- General Materials Science
- Condensed Matter Physics