A Revised Underwater Image Formation Model

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The current underwater image formation model descends from atmospheric dehazing equations where attenuation is a weak function of wavelength. We recently showed that this model introduces significant errors and dependencies in the estimation of the direct transmission signal because underwater, light attenuates in a wavelength-dependent manner. Here, we show that the backscattered signal derived from the current model also suffers from dependencies that were previously unaccounted for. In doing so, we use oceanographic measurements to derive the physically valid space of backscatter, and further show that the wideband coefficients that govern backscatter are different than those that govern direct transmission, even though the current model treats them to be the same. We propose a revised equation for underwater image formation that takes these differences into account, and validate it through in situ experiments underwater. This revised model might explain frequent instabilities of current underwater color reconstruction models, and calls for the development of new methods.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
PublisherIEEE Computer Society
Pages6723-6732
Number of pages10
ISBN (Electronic)9781538664209
DOIs
StatePublished - 14 Dec 2018
Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
Duration: 18 Jun 201822 Jun 2018

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
Country/TerritoryUnited States
CitySalt Lake City
Period18/06/1822/06/18

Bibliographical note

Publisher Copyright:
© 2018 IEEE.

ASJC Scopus subject areas

  • Software
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'A Revised Underwater Image Formation Model'. Together they form a unique fingerprint.

Cite this