A polynomial generalization of some associated sequences related to set partitions

Toufik Mansour, Mark Shattuck

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we consider a common polynomial generalization, denoted by wm(n,k)=wma,b,c,d(n,k), of several types of associated sequences. When a= 0 and b= 1 , one gets a generalized associated Lah sequence, while if c= 0 , d= 1 , one gets a polynomial array that enumerates a restricted class of weighted ordered partitions of size n having k blocks. The particular cases when a= d= 0 and b= c= 1 or when a= c= 0 and b= d= 1 correspond to the associated Stirling numbers of the first and second kind, respectively. We derive several combinatorial properties satisfied by wm(n, k) and consider further the case a= 0 , b= 1. Our results not only generalize prior formulas found for the associated Stirling and Lah numbers but also yield some apparently new identities for these sequences. Finally, explicit exponential generating function formulas for wm(n, k) are derived in the cases when a= 0 or b= 0.

Original languageEnglish
Pages (from-to)398-412
Number of pages15
JournalPeriodica Mathematica Hungarica
Volume75
Issue number2
DOIs
StatePublished - 1 Dec 2017

Bibliographical note

Publisher Copyright:
© 2017, Akadémiai Kiadó, Budapest, Hungary.

Keywords

  • Associated Lah numbers
  • Associated Stirling numbers
  • Combinatorial identities
  • Polynomial generalization

ASJC Scopus subject areas

  • General Mathematics

Fingerprint

Dive into the research topics of 'A polynomial generalization of some associated sequences related to set partitions'. Together they form a unique fingerprint.

Cite this