Abstract
We continue the study of multiple cluster structures in the rings of regular functions on GLn, SLn and Matn that are compatible with Poisson-Lie and Poisson-homogeneous structures. According to our initial conjecture, each class in the Belavin-Drinfeld classification of Poisson-Lie structures on a semisimple complex group G corresponds to a cluster structure in O(G). Here we prove this conjecture for a large subset of Belavin-Drinfeld (BD) data of An type, which includes all the previously known examples. Namely, we subdivide all possible An type BD data into oriented and non-oriented kinds. We further single out BD data satisfying a certain combinatorial condition that we call aperiodicity and prove that for any oriented BD data of this kind there exists a regular cluster structure compatible with the corresponding Poisson-Lie bracket. In fact, we extend the aperiodicity condition to pairs of oriented BD data and prove a more general result that establishes an existence of a regular cluster structure on SLn compatible with a Poisson bracket homogeneous with respect to the right and left action of two copies of SLn equipped with two different Poisson-Lie brackets. Similar results hold for aperiodic non-oriented BD data, but the analysis of the corresponding regular cluster structure is more involved and not given here. If the aperiodicity condition is not satisfied, a compatible cluster structure has to be replaced with a generalized cluster structure. We will address these situations in future publications.
Original language | English |
---|---|
Pages (from-to) | 297 |
Number of pages | 1 |
Journal | Memoirs of the American Mathematical Society |
Volume | 297 |
Issue number | 1486 |
State | Published - 2024 |
Bibliographical note
Publisher Copyright:© 2024 American Mathematical Society.
Keywords
- Belavin-Drinfeld triple
- Poisson-Lie group
- cluster algebra
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics