TY - JOUR
T1 - A comparison of drug effects in latent inhibition and the forced swim test differentiates between the typical antipsychotic haloperidol, the atypical antipsychotics clozapine and olanzapine, and the antidepressants imipramine and paroxetine
AU - Weiner, Ina
AU - Schiller, D.
AU - Gaisler-Salomon, I.
AU - Green, A.
AU - Joel, D.
PY - 2003/5
Y1 - 2003/5
N2 - Current animal models of antipsychotic activity that have the capacity to dissociate between typical and atypical antipsychotic drugs (APDs) have two drawbacks: they require previous administration of a psychotomimetic drug, and they achieve the dissociation by demonstrating effectiveness of atypical but not typical APDs, thus losing specificity and selectivity for APDs. The present experiments were designed to solve these problems by using two non-pharmacological tests: latent inhibition (LI), in which potentiation of the deleterious effects of non-reinforced stimulus pre-exposure on its subsequent conditioning served as a behavioral index for a common action of typical and atypical APDs (antipsychotic), and the forced swim test (FST), in which reduction of immobility served as a behavioral index for a dissimilar action of these drugs (antidepressant). The typical APD haloperidol (0.1 mg/kg), the atypical APDs clozapine (2.5 mg/kg) and olanzapine (0.6 mg/kg), and the antidepressants imipramine (10 mg/kg) and paroxetine (7.0 mg/kg), produced distinct patterns of action in the two tests: haloperidol potentiated LI and increased immobility in the FST, clozapine and olanzapine potentiated LI and decreased immobility in the FST, and imipramine and paroxetine decreased immobility in the FST and did not potentiate LI. Thus, the comparison of drug effects in LI and FST enabled a discrimination between typical and atypical APDs without losing selectivity for APDs.
AB - Current animal models of antipsychotic activity that have the capacity to dissociate between typical and atypical antipsychotic drugs (APDs) have two drawbacks: they require previous administration of a psychotomimetic drug, and they achieve the dissociation by demonstrating effectiveness of atypical but not typical APDs, thus losing specificity and selectivity for APDs. The present experiments were designed to solve these problems by using two non-pharmacological tests: latent inhibition (LI), in which potentiation of the deleterious effects of non-reinforced stimulus pre-exposure on its subsequent conditioning served as a behavioral index for a common action of typical and atypical APDs (antipsychotic), and the forced swim test (FST), in which reduction of immobility served as a behavioral index for a dissimilar action of these drugs (antidepressant). The typical APD haloperidol (0.1 mg/kg), the atypical APDs clozapine (2.5 mg/kg) and olanzapine (0.6 mg/kg), and the antidepressants imipramine (10 mg/kg) and paroxetine (7.0 mg/kg), produced distinct patterns of action in the two tests: haloperidol potentiated LI and increased immobility in the FST, clozapine and olanzapine potentiated LI and decreased immobility in the FST, and imipramine and paroxetine decreased immobility in the FST and did not potentiate LI. Thus, the comparison of drug effects in LI and FST enabled a discrimination between typical and atypical APDs without losing selectivity for APDs.
KW - Antidepressant drugs
KW - Antipsychotic drugs
KW - Forced swim test
KW - Latent inhibition
KW - Rat
UR - http://www.scopus.com/inward/record.url?scp=0038687077&partnerID=8YFLogxK
U2 - 10.1097/00008877-200305000-00005
DO - 10.1097/00008877-200305000-00005
M3 - Article
C2 - 12799523
AN - SCOPUS:0038687077
SN - 0955-8810
VL - 14
SP - 215
EP - 222
JO - Behavioural Pharmacology
JF - Behavioural Pharmacology
IS - 3
ER -