Abstract
We provide the first streaming algorithm for computing a provable approximation to the κ-means of sparse Big Data. Here, sparse Big Data is a stream of n vectors in ℝd, where each vector has O(1) non-zeroes entries and possibly d ≥ n. E.g., adjacency matrix of a graph, web-links, social network, document-terms, or image-features matrices. Our streaming algorithm stores at most logn κO(1) input points in memory. If the stream is distributed among M machines, the running time reduces by a factor of M, while communicating a total of M κO(1) (sparse) input points between the machines. Our main contribution is a deterministic algorithm for computing a sparse (κ,ϵ)-coreset, which is a weighted subset of κO(1) input points that approximates the sum of squared distances from the n input points to every set of κ centers, up to (1 ± ϵ) factor, for any given constant ϵ > 0. This is the first such coreset of size independent of both d and n. Our experimental results show how our algorithm can bs used to boost the performance of any given κ-means heuristics, even in the off-line setting. Open access to our implementation is also provided.
Original language | English |
---|---|
Title of host publication | 16th SIAM International Conference on Data Mining 2016, SDM 2016 |
Editors | Sanjay Chawla Venkatasubramanian, Wagner Meira |
Publisher | Society for Industrial and Applied Mathematics Publications |
Pages | 342-350 |
Number of pages | 9 |
ISBN (Electronic) | 9781510828117 |
DOIs | |
State | Published - 2016 |
Event | 16th SIAM International Conference on Data Mining 2016, SDM 2016 - Miami, United States Duration: 5 May 2016 → 7 May 2016 |
Publication series
Name | 16th SIAM International Conference on Data Mining 2016, SDM 2016 |
---|
Conference
Conference | 16th SIAM International Conference on Data Mining 2016, SDM 2016 |
---|---|
Country/Territory | United States |
City | Miami |
Period | 5/05/16 → 7/05/16 |
Bibliographical note
Funding Information:Support for this work has been provided in part by BSF/NSF Grant Number: 2014627 and by GIF 2408-407.6 Young Scientists' Program Contract No.: I-1186-407.9-2014.
Publisher Copyright:
Copyright © by SIAM.
Keywords
- Big-Data
- Clustering
- Coresets
- Distributed
- Streaming
- κ-Means
ASJC Scopus subject areas
- Computer Science Applications
- Software