Abstract
The flow of particulate nitrogen from marine net pen fish farm effluents to the surrounding biofouling community was quantified by means of stable isotopes of nitrogen. Plastic mesh substrates were deployed at 8 m depth near a sea bream fish farm and at a nearby reference site in the northern Gulf of Aqaba (Red Sea) to assess whether natural fouling organisms could sequester substantial quantities of farm-derived particulate nitrogen waste. A mixing equation, incorporating differences in nitrogen stable isotope composition, δ15N, between particulate organic matter ("source") and fouling organisms ("sink") at the fish farm and reference site, was used to estimate the amount of farm-derived nitrogen that was incorporated by the fouling community. Among the conspicuous fouling organisms examined, sponges, tunicates and polychaetes showed greatest uptake of fish farm N, where the mean fractions of farm-derived N estimated over the 2-year period of observation were 19±7, 22±6 and 31±8% of total organisms' N content, respectively, with maximal recorded seasonal values of 68, 85 and 57%, respectively. Mean N uptake by mixed fouling communities (conspicuous + cryptic organisms) was as much as fivefold higher than that calculated for the sum of conspicuous taxa, suggesting that the retention efficiency is greater in mixed than in mono-specific biofouling communities.
Original language | English |
---|---|
Pages (from-to) | 87-96 |
Number of pages | 10 |
Journal | Marine Biology |
Volume | 148 |
Issue number | 1 |
DOIs | |
State | Published - Nov 2005 |
Bibliographical note
Funding Information:Acknowledgements This study was financed by the EU programme ‘‘Quality of Life and Management of Living Resources’’, Contract No. Q5RS-2000-30305. The authors would like to acknowledge the kind assistance of the following groups and individuals in the field and laboratory work associated with this project: the Ardag fish farm, I. Lupatsch (Israel Oceanographic & Limnological Research), H. Lubinevsky (Haifa University), B. Cˇ ermelj (Marine Biology Station, National Institute of Biology, Slovenia), S. Zˇ igon (J. Stefan Institute) and the P. Gschwend laboratory (Massachusetts Institute of Technology). All experiments performed in this study comply with the laws of the State of Israel and EU regulations.
ASJC Scopus subject areas
- Ecology, Evolution, Behavior and Systematics
- Ecology
- Aquatic Science