Filter
Conference contribution

Search results

  • 2023

    Deep Learning on Home Drone: Searching for the Optimal Architecture

    Maalouf, A., Gurfinkel, Y., Diker, B., Gal, O., Rus, D. & Feldman, D., 2023, Proceedings - ICRA 2023: IEEE International Conference on Robotics and Automation. Institute of Electrical and Electronics Engineers Inc., p. 8208-8215 8 p. (Proceedings - IEEE International Conference on Robotics and Automation; vol. 2023-May).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2022

    Coreset for Line-Sets Clustering

    Lotan, S., Shayda, E. E. S. & Feldman, D., 2022, Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022. Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K. & Oh, A. (eds.). Neural information processing systems foundation, (Advances in Neural Information Processing Systems; vol. 35).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Newton-PnP: Real-time Visual Navigation for Autonomous Toy-Drones

    Jubran, I., Fares, F., Alfassi, Y., Ayoub, F. & Feldman, D., 2022, IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. Institute of Electrical and Electronics Engineers Inc., p. 13363-13370 8 p. (IEEE International Conference on Intelligent Robots and Systems; vol. 2022-October).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Obstacle Aware Sampling for Path Planning

    Tukan, M., Maalouf, A., Feldman, D. & Poranne, R., 2022, IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022. Institute of Electrical and Electronics Engineers Inc., p. 13676-13683 8 p. (IEEE International Conference on Intelligent Robots and Systems; vol. 2022-October).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2021

    Compressing Neural Networks: Towards Determining the Optimal Layer-wise Decomposition

    Liebenwein, L., Maalouf, A., Gal, O., Feldman, D. & Rus, D., 2021, Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021. Ranzato, MA., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Wortman Vaughan, J. (eds.). Neural information processing systems foundation, p. 5328-5344 17 p. (Advances in Neural Information Processing Systems; vol. 7).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Coresets for Decision Trees of Signals

    Jubran, I., Sanches Shayda, E. E., Newman, I. & Feldman, D., 7 Oct 2021, Advances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021. Ranzato, MA., Beygelzimer, A., Dauphin, Y., Liang, P. S. & Wortman Vaughan, J. (eds.). Neural information processing systems foundation, p. 30352-30364 13 p. (Advances in Neural Information Processing Systems; vol. 36).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Efficient Coreset Constructions via Sensitivity Sampling

    Braverman, V., Feldman, D., Lang, H., Statman, A. & Zhou, S., 1 May 2021, Proceedings of The 13th Asian Conference on Machine Learning. PMLR, Vol. 157. p. 948-963 16 p. (Proceedings of Machine Learning Research).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Provably Approximated Point Cloud Registration

    Jubran, I., Maalouf, A., Kimmel, R. & Feldman, D., 2021, Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV’21) . Institute of Electrical and Electronics Engineers Inc., p. 13269-13278 10 p. (Proceedings of the IEEE International Conference on Computer Vision).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Resolving battery status and customer matching to create 24/7 drones based advertisement system

    Danial, J., Ben Asher, Y. & Feldman, D., 2021, Proceedings - 2021 5th IEEE International Conference on Robotic Computing, IRC 2021. Institute of Electrical and Electronics Engineers Inc., p. 131-136 6 p. (Proceedings - 2021 5th IEEE International Conference on Robotic Computing, IRC 2021).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2020

    Coresets for near-convex functions

    Tukan, M., Maalouf, A. & Feldman, D., 2020, Conference on Neural Information Processing Systems (NeurIPS, formerly NIPS). Vol. 2020-December. (Advances in Neural Information Processing Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Data-Independent Structured Pruning of Neural Networks via Coresets

    Mussay, B., Feldman, D., Zhou, S., Braverman, V. & Osadchy, M., 2020, 8th International Conference on Learning Representations, ICLR 2020. 24 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • On Coresets for Support Vector Machines

    Tukan, M., Baykal, C., Feldman, D. & Rus, D., 2020, Theory and Applications of Models of Computation - 16th International Conference, TAMC 2020, Proceedings. Chen, J., Feng, Q. & Xu, J. (eds.). Springer Science and Business Media Deutschland GmbH, p. 287-299 13 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 12337 LNCS).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Sets Clustering

    Jubran, I., Tukan, M., Maalouf, A. & Feldman, D., 2020, 37th International Conference on Machine Learning, ICML 2020. Daume, H. & Singh, A. (eds.). International Machine Learning Society (IMLS), p. 4961-4972 12 p. (37th International Conference on Machine Learning, ICML 2020; vol. PartF168147-7).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Tight Sensitivity Bounds for Smaller Coresets

    Maalouf, A., Statman, A. & Feldman, D., 23 Aug 2020, KDD 2020 - Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, p. 2051-2061 11 p. (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2019

    Deterministic coresets for stochastic matrices with applications to scalable sparse pagerank

    Lang, H., Baykal, C., Samra, N. A., Tannous, T., Feldman, D. & Rus, D., 2019, Theory and Applications of Models of Computation - 15th Annual Conference, TAMC 2019, Proceedings. Gopal, T. V. & Watada, J. (eds.). Springer Verlag, p. 410-423 14 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11436 LNCS).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Streaming coreset constructions for M-estimators

    Braverman, V., Feldman, D., Lang, H. & Rus, D., Sep 2019, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2019. Achlioptas, D. & Vegh, L. A. (eds.). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, p. 62:1—62:16 62. (Leibniz International Proceedings in Informatics, LIPIcs; vol. 145).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2018

    Secure search on encrypted data via multi-ring sketch

    Akavia, A., Feldman, D. & Shaul, H., 15 Oct 2018, CCS 2018 - Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. Association for Computing Machinery, p. 985-1001 17 p. (Proceedings of the ACM Conference on Computer and Communications Security).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2017

    Coresets for differentially private k-means clustering and applications to privacy in mobile sensor networks

    Feldman, D., Xiang, C., Zhu, R. & Rus, D., 18 Apr 2017, Proceedings - 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2017. Association for Computing Machinery, Inc, p. 3-15 13 p. (Proceedings - 2017 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, IPSN 2017).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Coresets for vector summarization with applications to network graphs

    Feldman, D., Ozer, S. & Rus, D., 2017, 34th International Conference on Machine Learning, ICML 2017. International Machine Learning Society (IMLS), p. 1847-1855 9 p. (34th International Conference on Machine Learning, ICML 2017; vol. 3).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2016

    κ-means for streaming and distributed big sparse data

    Barger, A. & Feldman, D., 2016, 16th SIAM International Conference on Data Mining 2016, SDM 2016. Venkatasubramanian, S. C. & Meira, W. (eds.). Society for Industrial and Applied Mathematics Publications, p. 342-350 9 p. (16th SIAM International Conference on Data Mining 2016, SDM 2016).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2015

    Coresets for visual summarization with applications to loop closure

    Volkov, M., Rosman, G., Feldman, D., Fisher, J. W. & Rus, D., 29 Jun 2015, IEEE International Conference on Robotics and Automation (ICRA) 2015. June ed. Institute of Electrical and Electronics Engineers Inc., Vol. 2015-June. p. 3638-3645 8 p. (Proceedings - IEEE International Conference on Robotics and Automation; vol. 2015-June, no. June).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Fleye on the car: Big data meets the Internet of Things

    Nasser, S., Barry, A., Doniec, M., Peled, G., Rosman, G., Rus, D., Volkov, M. & Feldman, D., 13 Apr 2015, IPSN 2015 - Proceedings of the 14th International Symposium on Information Processing in Sensor Networks (Part of CPS Week). Association for Computing Machinery, Inc, p. 382-383 2 p. (IPSN 2015 - Proceedings of the 14th International Symposium on Information Processing in Sensor Networks (Part of CPS Week)).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • More constraints, smaller coresets: Constrained matrix approximation of sparse big data

    Feldman, D. & Tassa, T., 10 Aug 2015, KDD 2015 - Proceedings of the 21st ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery, p. 249-258 10 p. (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; vol. 2015-August).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2014

    Coresets for k-segmentation of streaming data

    Rosman, G., Volkov, M., Feldman, D., Fisher, J. W. & Rus, D., 2014, Advances in Neural Information Processing Systems )NIPS) 2014. January ed. Vol. 1. p. 559-567 9 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Smallest enclosing ball for probabilistic data

    Munteanu, A., Sohler, C. & Feldman, D., 2014, Proceedings of the 30th Annual Symposium on Computational Geometry, SoCG 2014. Association for Computing Machinery, p. 214-223 10 p. (Proceedings of the Annual Symposium on Computational Geometry).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Visual precis generation using coresets

    Paul, R., Feldman, D., Rus, D. & Newman, P., 22 Sep 2014, IEEE International Conference on Robotics and Automation (ICRA) 2014. Institute of Electrical and Electronics Engineers Inc., p. 1304-1311 8 p. (Proceedings - IEEE International Conference on Robotics and Automation).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2013

    IDiary: From GPS signals to a text-searchable diary

    Feldman, D., Sugaya, A., Sung, C. & Rus, D., 2013, SenSys 2013 - Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems. Association for Computing Machinery, p. 6:1-6:12 6. (SenSys 2013 - Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • K-robots clustering of moving sensors using coresets

    Feldman, D., Gil, S., Knepper, R. A., Julian, B. & Rus, D., 2013, 2013 IEEE International Conference on Robotics and Automation, ICRA 2013. p. 881-888 8 p. 6630677. (Proceedings - IEEE International Conference on Robotics and Automation).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Turning Big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering

    Feldman, D., Schmidt, M. & Sohler, C., 2013, Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013. Association for Computing Machinery, p. 1434-1453 20 p. (Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2012

    An effective coreset compression algorithm for large scale sensor networks

    Feldman, D., Sugaya, A. & Rus, D., 2012, IPSN'12 - Proceedings of the 11th International Conference on Information Processing in Sensor Networks. p. 257-268 12 p. (IPSN'12 - Proceedings of the 11th International Conference on Information Processing in Sensor Networks).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Communication coverage for independently moving robots

    Gil, S., Feldman, D. & Rus, D., 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012. p. 4865-4872 8 p. 6386226. (IEEE International Conference on Intelligent Robots and Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Data reduction for weighted and outlier-resistant clustering

    Feldman, D. & Schulman, L. J., 2012, Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012. Association for Computing Machinery, p. 1343-1354 12 p. (Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • From high definition image to low space optimization

    Feigin, M., Feldman, D. & Sochen, N., 2012, Scale Space and Variational Methods in Computer Vision - Third International Conference, SSVM 2011, Revised Selected Papers. p. 459-470 12 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 6667 LNCS).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • The single pixel GPS: Learning big data signals from tiny coresets

    Feldman, D., Sung, C. & Rus, D., 2012, 20th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM SIGSPATIAL GIS 2012. p. 23-32 10 p. (GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Trajectory clustering for motion prediction

    Sung, C., Feldman, D. & Rus, D., 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2012. p. 1547-1552 6 p. 6386017. (IEEE International Conference on Intelligent Robots and Systems).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2011

    A unified framework for approximating and clustering data

    Feldman, D. & Langberg, M., 2011, STOC'11 - Proceedings of the 43rd ACM Symposium on Theory of Computing. Association for Computing Machinery, p. 569-578 10 p. (Proceedings of the Annual ACM Symposium on Theory of Computing).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • Scalable training of mixture models via coresets

    Feldman, D., Faulkner, M. & Krause, A., 2011, Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011. Neural Information Processing Systems, (Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2010

    Coresets and sketches for high dimensional subspace approximation problems

    Feldman, D., Monemizadeh, M., Sohler, C. & Woodruff, D. P., 2010, Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms. Association for Computing Machinery (ACM), p. 630-649 20 p. (Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2009

    Private coresets

    Feldman, D., Fiat, A., Kaplan, H. & Nissim, K., 2009, STOC'09 - Proceedings of the 2009 ACM International Symposium on Theory of Computing. p. 361-370 10 p. (Proceedings of the Annual ACM Symposium on Theory of Computing).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • 2007

    A PTAS for k-means clustering based on weak coresets

    Feldman, D., Monemizadeh, M. & Sohler, C., 2007, Proceedings of the Twenty-third Annual Symposium on Computational Geometry, SCG'07. p. 11-18 8 p. (Proceedings of the Annual Symposium on Computational Geometry).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

  • Bi-criteria linear-time approximations for generalized k-mean/median/center

    Feldman, D., Fiat, A., Sharir, M. & Segev, D., 2007, Proceedings of the Twenty-third Annual Symposium on Computational Geometry, SCG'07. p. 19-26 8 p. (Proceedings of the Annual Symposium on Computational Geometry).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Open Access
  • 2006

    Coresets for weighted facilities and their applications

    Feldman, D., Fiat, A. & Sharif, M., 2006, 47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006. p. 315-324 10 p. 4031367. (Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS).

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review